90 #2018. 初赛营6_阅读程序与完善程序

初赛营6_阅读程序与完善程序

23年阅读程序和完善程序截取 【满分90分】

(1)

#include <iostream>
#include <cmath>
using namespace std;

double f(double a, double b, double c) {
    double s = (a + b + c) / 2;
    return sqrt(s * (s - a) * (s - b) * (s - c));
}

int main() {
    cout.flags(ios::fixed);
    cout.precision(4);

    int a, b, c;
    cin >> a >> b >> c;
    cout << f(a, b, c) << endl;
    return 0;
}
  1. (2分)当输入为“2 2 2”时,输出为“1.7321”() {{ select(1) }}
  • T
  • F
  1. (2分)将第 7 行中的“(s - b) * (s - c)”改为“(s - c) * (s - b)”不会影响程序运行的结果() {{ select(2) }}
  • T
  • F
  1. (2分)程序总是输出四位小数() {{ select(3) }}
  • T
  • F
  1. 当输入为“3 4 5”时,输出为() {{ select(4) }}
  • “6.0000”
  • “12.0000”
  • “24.0000”
  • “30.0000”
  1. 当输入为“5 12 13”时,输出为() {{ select(5) }}
  • “24.0000”
  • “30.0000”
  • “60.0000”
  • “120.0000”

(2)

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int f(string x,string y){
    int m=x.size();
    int n=y.size();
    vector<vector<int>>v(m+1,vector<int>(n+1,0));
    for(int i=1;i<=m;i++){
       for(int j=1;j<=n;j++){
            if(x[i-1]==y[j-1]){
                v[i][j]=v[i-1][j-1]+1;
            }else{
                v[i][j]=max(v[i-1][j],v[i][j-1]);
            }
        }
    }
    return v[m][n];
}
bool g(string x,string y){
    if(x.size() != y.size()){
        return false;
    }
    return f(x+x,y)==y.size();
}
int main(){
    string x,y;
    cin>>x>>y;
    cout<<g(x,y)<<endl;
    return 0;
}
  1. f 函数的返回值小于等于 min(n,m)。() {{ select(6) }}
  • T
  • F
  1. f 函数的返回值等于两个输入字符串的最长公共子串的长度。() {{ select(7) }}
  • T
  • F
  1. 当输入两个完全相同的字符串时,g 函数的返回值总是true。() {{ select(8) }}
  • T
  • F
  1. 将第 19 行中的“v[m][n]”替换为“v[n][m]”,那么该程序() {{ select(9) }}
  • 行为不变
  • 只会改变输出
  • 一定非正常退出
  • 可能非正常退出
  1. 当输入为“csp-j p-jcs”时,输出为() {{ select(10) }}
  • “0”
  • “1”
  • “T”
  • “F”
  1. 当输入为“csppsc spsccp”时,输出为() {{ select(11) }}
  • “T”
  • “F”
  • “0”
  • “1”

(3)

#include <iostream>
#include <cmath>
using namespace std;

int solve1(int n) {
    return n * n;
}

int solve2(int n) {
    int sum = 0;
    for (int i = 1; i <= sqrt(n); i++) {
        if(n % i == 0) {
            if(n/i == i) {
                sum += i*i;
            } else {
               sum += i*i + (n/i)*(n/i);
            }
         }
    }
    return sum;
}

int main() {
    int n;
    cin >> n;
    cout << solve2(solve1(n)) << " " << solve1(solve2(n)) << endl;
    return 0;
}
假设输入的 n 是绝对值不超过 1000 的整数,完成下面的判断题和单选题:
  1. 如果输入的 n 为正整数,solve2 函数的作用是计算 n 所有因子的平方和。() {{ select(12) }}
  • T
  • F
  1. 第 13-14 行的作用是避免 n 的平方根因子 i(或n/i)进入第 16 行而被计算两次。() {{ select(13) }}
  • T
  • F
  1. 如果输入的 n 为质数,solve2(n) 的返回值为n2+1。() {{ select(14) }}
  • T
  • F
  1. (4分)如果输入的 n 为质数 p 的平方,那么solve2(n)的返回值为() {{ select(15) }}
  • p2+p+1
  • n2+n+1
  • n2+1
  • p4+2p2+1
  1. 当输入为正整数时,第一项减去第二项的差值一定() {{ select(16) }}
  • 大于0
  • 大于等于0且不一定大于0
  • 小于0
  • 小于等于0且不一定小于0
  1. 当输入为“5”时,输出为() {{ select(17) }}
  • “651 625”
  • “650 729”
  • “651 676”
  • “652 625”

三,完善程序(单选题,每小题 3 分)

(1) (寻找被移除的元素)问题:原有长度为 n+1,公差为 1 的等差升序数列,将数列输入到程序的数组时移除了一个元素,导致长度为 n 的升序数组可能不再连续,除非被移除的是第一个或者最后一个元素。需要在数组不连续时,找出被移除的元素。

试补全程序

#include <iostream>
#include <vector>

using namespace std;
int find_missing(vector<int>& nums) {
    int left = 0, right = nums.size() - 1;
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == mid + ①) {
            ②;
        } else {
           ③;
        }
     }
     return ④;
}

int main() {
    int n;
    cin >> n;
    vector<int> nums(n);
    for(int i = 0; i < n; i++)cin >> nums[i];
    int missing_number = find_missing(nums);
    if (missing_number == ⑤) {
        cout << "Sequence is consecutive" << endl;
    } else {
        cout << "Missing number is " << missing_number << endl;
    }
    return 0;
}
  1. ①处应填() {{ select(18) }}
  • 1
  • nums[0]
  • right
  • left
  1. ②处应填() {{ select(19) }}
  • left = mid + 1
  • right = mid - 1
  • right = mid
  • left = mid
  1. ③处应填() {{ select(20) }}
  • left = mid + 1
  • right = mid - 1
  • right = mid
  • left = mid
  1. ④处应填() {{ select(21) }}
  • left + nums[0]
  • right + nums[0]
  • mid + nums[0]
  • right + 1
  1. ⑤处应填() {{ select(22) }}
  • nums[0]+n
  • nums[0]+n-1
  • nums[0]+n+1
  • nums[n-1]

(2) (编辑距离)给定两个字符串,每次操作可以删除(Delete),插入(Insert),替换(Replace)一个字符,求将第一个字符串转换为第二个字符串所需要的最少操作次数。

试补全动态规划算法。

#include <iostream> 
#include <string> 
#include <vector> 
using namespace std; 

int min(int x, int y, int z) { 
    return min(min(x, y), z); 
} 

int edit_dist_dp(string str1, string str2) { 
    int m = str1.length(); 
    int n = str2.length(); 
    vector<vector<int>> dp(m + 1, vector<int>(n + 1)); 
    for (int i = 0; i <= m; i++) { 
        for (int j = 0; j <= n; j++) { 
            if (i == 0) 
                dp[i][j] = ①; 
            else if (j == 0) 
                dp[i][j] = ②; 
            else if (③) 
                dp[i][j] = ④; 
            else 
                dp[i][j] = 1 + min(dp[i][j - 1], dp[i - 1][j], ⑤); 
         } 
     } 
    return dp[m][n]; 
} 

int main() { 
    string str1, str2; 
    cin >> str1 >> str2; 
    cout << "Mininum number of operation:" << edit_dist_dp(str1, str2) << endl; 
    return 0; 
}
  1. ①处应填() {{ select(23) }}
  • j
  • i
  • m
  • n
  1. ②处应填() {{ select(24) }}
  • j
  • i
  • m
  • n
  1. ③处应填() {{ select(25) }}
  • str1[i - 1] == str2[j-1]
  • str1[i] == str2[j]
  • str1[i - 1] != str2[j - 1]
  • str1[i] != str2[j]
  1. ④处应填() {{ select(26) }}
  • dp[i - 1][j - 1] + 1
  • dp[i - 1][j - 1]
  • dp[i - 1][j]
  • dp[i][j - 1]
  1. ⑤处应填() {{ select(27) }}
  • dp[i][j] + 1
  • dp[i - 1][j - 1] + 1
  • dp[i - 1][j - 1]
  • dp[i][j]